Logic Synthesis of Recombinase-based Genetic Circuits

Jie-Hong Roland Jiang

Department of Electrical Engineering Graduate Institute of Electronics Engineering National Taiwan University

EPFL Workshop

Design Automation for Wetware!

Hardware

- Data representationVoltage
- Signal
 - Wires
 - "Unlimited" signals
- High predictability
 Well-controlled electrical environment
- Design principle
 Mostly digital
 Mostly synchronous

Wetware

- Data representationConcentration
- Signal
 - Molecular speciesLimited signals
- Low predictability
 - Noisy biochemical environment
- Design principle
 Analog + digital
 Mostly asynchronous

Outline

Introduction

Formalism

- Genetic Circuit Synthesis
- Genetic Circuit Optimization
- Summary and future work

Systems and Synthetic Biology

- Biotechnology has promising applications in health, medicine, environment, food, energy, etc.
- Learn circuit design principles from nature
 - Complex behaviors of bacteria, say, emerge from fundamental biochemical reactions
- Engineer circuit components and systems from known biochemical parts
 - Bio-design automation

Source: openbiolabs.org

Why Logic Design in Biology ?

Computation in living cells

- Sensing / diagnosis
- Decision making
- Response / control

2017/9/29

Insulin signaling pathways

Central dogma of molecular biology

EPFL Workshop

Gene Transcription

Site-Specific Recombination

Site-specific recombinase for inversion (and excision)

Irreversible (mostly)Long-term memory effect cross generations

Other Genome Editing Method

CRISPR/Cas9 systems

Excision/insertion in genome editing

Activation/inhibition in gene expression regulation (defective form of Cas9)

Outline

Introduction

Formalism

- Genetic Circuit Synthesis
- Genetic Circuit Optimization
- □ Summary and future work

Logic Design with Recombinase

Bxb1	phiC31	GFP
0	0	0
1	0	0
0	1	0
1	1	1

Recombinase-based Logic Gates

Recombinase Logic Gate: Syntax

Atomic terms

 $\langle atomic \ term \rangle ::= P | d | T | L | G | 9$

Well-formed sequence

 $\langle wfs \rangle ::= \langle atomic \ term \rangle \mid \{ \langle wfs \rangle \}_{r_i} \mid \langle wfs \rangle \langle wfs \rangle$

Reduction rules

$$\sigma_1 \{T\}_r \sigma_2 G \equiv \begin{cases} \sigma_2 G, & \text{for } R = 0\\ \sigma_1 \sigma_2 G, & \text{for } R = 1 \end{cases}$$

$$\sigma_1 \{L\}_r \sigma_2 G \equiv \begin{cases} \sigma_1 \sigma_2 G, & \text{for } R = 0 \\ \sigma_2 G, & \text{for } R = 1 \end{cases}$$

$$\sigma_1 \{P\}_r \sigma_2 G \equiv \begin{cases} P \sigma_2 G, & \text{for } R = 0 \\ \sigma_1 \sigma_2 G, & \text{for } R = 1 \end{cases}$$

$$\sigma_1 \{d\}_r \sigma_2 G \equiv \begin{cases} \sigma_1 \sigma_2 G, & \text{for } R = 0\\ P \sigma_2 G, & \text{for } R = 1 \end{cases}$$

2017/9/29

$\Box \Omega$ -operator on a well-formed sequence

component C	operator $\Omega[\sigma C]$
Т	$0 \cdot (\Omega[\sigma])$
Р	$1 + (\Omega[\sigma])$
$\{T\}_r$	$R \cdot (\Omega[\sigma])$
$\{P\}_r$	$\overline{R} + (\Omega[\sigma])$
L	$1 \cdot (\Omega[\sigma])$
d	$0 + (\Omega[\sigma])$
$\{L\}_r$	$\overline{R} \cdot (\Omega[\sigma])$
$\{d\}_r$	$R + (\Omega[\sigma])$

 $\Omega[\emptyset] = 0$

Example ${T}_{r_5}{P}_{r_4}{L}_{r_3}{d}_{r_2}{T}_{r_1}$ $(R_1$ 0 ${T}_{r_5}{P}_{r_4}{L}_{r_3}{d}_{r_2}$ R_2 Р 0 ${T}_{r_5}{P}_{r_4}{L}_{r_3}$ R_3 0 ${T}_{r_5}{P}_{r_4}$ R_{4} P() ${T}_{r_5}$ R_5 0 0

_				
	_	σ		
	$\Omega[T]$	$P_{r_5}\{P\}_{r_4}$	$\{L\}_{r_3}\{d\}_{r_2}$	$\{T\}_{r_1}]$
		σ		C
=	$R_1(S)$	$2[\{T\}_{r_5}\{P$	$\{L\}_{r_4}\{L\}_{r_3}$	$\{H\}_{r_2}$
=	$R_1(I$	$R_2 + (\Omega[\{7$	$P_{r_5}\{P\}_{r_4}\{P\}_{r_4}\{P\}_{r_4}\{P\}_{r_4}\{P\}_{r_4}\}$	$L\}_{r_3}]))$
=	$R_1(I$	$R_2 + (\overline{R_3})$	$\Omega[\{T\}_{r_5}\{P\}$	$_{r_4}])))$
=	$R_1(I$	$R_2 + (\overline{R_3})$	$\overline{R_4} + (\Omega[\{7$	$]_{r_5}]))))$
=	$R_1(I$	$R_2 + (\overline{R_3})$	$\overline{R_4} + (R_5(S_4))$	$2[\perp])))))$
=	$R_1(I$	$R_2 + (\overline{R_3})$	$\overline{R_4} + (R_5(0$)))))
=	$R_1(I$	$R_2 + (\overline{R_3}\overline{R_3})$	$\overline{R_4})).$	
		component C	operator $\Omega[\sigma C]$	
		Т	$0 \cdot (\Omega[\sigma])$	
		P	$1+(\Omega[\sigma])$	
		$\{T\}_r$	$R\cdot (\Omega[\sigma])$	
		$\{P\}_r$	$\overline{R} + (\Omega[\sigma])$	
		\mathcal{L}	$1 \cdot (\Omega[\sigma])$	
		d	$0 + (\Omega[\sigma])$	
		$\{L\}_r$	$\overline{R} \cdot (\Omega[\sigma])$	4 7
		$\{d\}_r$	$R + (\Omega[\sigma])$	17

$\square \ \Omega[\{\sigma\}_r] = \overline{R} \cdot \Omega[\sigma] + R \cdot \Omega[\rho]$

Example

$$\Omega[\{\{T\}_{r_5}\{P\}_{r_4}\{L\}_{r_3}\{d\}_{r_2}\{T\}_{r_1}\}_{r_6}] = \overline{R_6}\Omega[\{T\}_{r_5}\{P\}_{r_4}\{L\}_{r_3}\{d\}_{r_2}\{T\}_{r_1}] + R_6\Omega[\{L\}_{r_1}\{P\}_{r_2}\{T\}_{r_3}\{d\}_{r_4}\{L\}_{r_5}] = \overline{R_6}\left(R_1(R_2 + (\overline{R_3}(\overline{R_4} + (R_5(0))))) + R_6(\overline{R_5}(R_4 + (R_3(\overline{R_2} + (\overline{R_1}(0)))))) + \overline{R_6}(\overline{R_5}(R_4 + (R_3(\overline{R_2} + (\overline{R_1}(0))))))) = \overline{R_6}R_1(R_2 + \overline{R_3}\overline{R_4}) + R_6\overline{R_5}(R_4 + R_3\overline{R_2}).$$

$$\Omega[\{\{P\}_{r_4}\{\{L\}_{r_3}\{d\}_{r_2}\}_{r_5}\{T\}_{r_1}\}_{r_6}] = \cdots$$

= $\overline{R_6}R_1(\overline{R_5}(R_2 + \overline{R_3}\overline{R_4}) + R_5(R_3(\overline{R_2} + \overline{R_4}))) + R_6(R_4 + \overline{R_5}R_3\overline{R_2} + R_5R_2).$

Outline

Introduction

Formalism

Genetic Circuit Synthesis

Genetic Circuit Optimization

□ Summary and future work

Multi-level Recombinase Circuits

Logic Synthesis of Recombinase Circuits

Input circuit netlist

basic logic gates with up to three inputs

	NAME	AREA	FUNCTION	NAME	AREA	FUNCTION	NAME	AREA	FUNCTION
	c1_1	1	O = a	$c3_{-}5$	3	$O = a + (b^*(c))$	c3_19	3	$O = a^*(!b+(c))$
	c1_2	1	O = !a	c3_6	3	$O = a + (b^*(!c))$	c3_20	3	$O = a^{*}(!b + (!c))$
	c2_1	2	O = a + (b)	c3_7	3	$\mathbf{O} = \mathbf{a} + (\mathbf{!b}^*(\mathbf{c}))$	c3_21	3	$O = a^*(b^*(c))$
	c2_2	2	O = a + (!b)	c3_8	3	$O = a + (!b^*(!c))$	c3_22	3	$\mathbf{O} = \mathbf{a}^*(\mathbf{b}^*(!\mathbf{c}))$
	c2_3	2	O = !a+(b)	c3_9	3	O = !a+(b+(c))	c3_23	3	$O = a^*(!b^*(c))$
	$c2_4$	2	O = !a + (!b)	c3_10	3	O = !a+(b+(!c))	c3_24	3	$\mathbf{O} = \mathbf{a}^*(!\mathbf{b}^*(!\mathbf{c}))$
\supset	$c2_5$	2	$O = a^*(b)$	c3_11	3	$\mathbf{O} = \mathbf{!}\mathbf{a} + (\mathbf{!}\mathbf{b} + (\mathbf{c}))$	$c3_{-}25$	3	$\mathbf{O} = \mathbf{!a^{*}(b+(c))}$
ibrary	c2_6	2	$\mathbf{O} = \mathbf{a}^*(!\mathbf{b})$	c3_12	3	O = !a+(!b+(!c))	c3_26	3	$O = !a^{*}(b+(!c))$
ibrary	$c2_7$	2	$O = !a^*(b)$	c3_13	3	$O = !a+(b^*(c))$	$c3_{-}27$	3	$O = !a^{*}(!b+(c))$
	c2_8	2	$O = !a^*(!b)$	c3_14	3	$\mathbf{O} = \mathbf{!a} + (\mathbf{b}^*(\mathbf{!c}))$	c3_28	3	$O = !a^{*}(!b+(!c))$
	c3_1	3	$\mathbf{O} = \mathbf{a} + (\mathbf{b} + (\mathbf{c}))$	c3_15	3	$O = !a+(!b^*(c))$	c3_29	3	$\mathbf{O} = \mathbf{!a^*(b^*(c))}$
	$c3_2$	3	$\mathbf{O} = \mathbf{a} + (\mathbf{b} + (\mathbf{!c}))$	c3_16	3	$O = !a+(!b^{*}(!c))$	c3_30	3	$O = !a^{*}(b^{*}(!c))$
	c3_3	3	O = a + (!b + (c))	c3_17	3	$\mathbf{O} = \mathbf{a}^*(\mathbf{b} + (\mathbf{c}))$	c3_31	3	$O = !a^{*}(!b^{*}(c))$
	c3_4	3	O = a + (!b + (!c))	c3_18	3	$\mathbf{O} = \mathbf{a}^*(\mathbf{b} + (\mathbf{!c}))$	c3_32	3	$O = !a^{*}(!b^{*}(!c))$
	zero	0	O = CONSTO	one	1	O = CONST1			

Logic Synthesis of Recombinase Circuits

Synthesis Results

Recombinase circuit synthesis with ABC

	benchmark profile			area optimi	area optimization			delay optimization		
circuit name	#PI/#PO	#inverter	#gate (#buffer)	#DNA gate	area	#level	#DNA gate	area	#level	
b03	34/34	16	106	91	217	7	79	228	4	
b04	77/74	105	547	373	852	22	358	881	8	
b06	11/15	7	32	25	56	6	24	62	3	
b07	50/57	61	322	257	583	23	235	615	8	
b08	30/25	26	123	90	224	12	85	233	5	
b09	29/29	24	116	106	228	10	96	240	5	
b10	28/23	32	140	100	260	11	96	298	4	
b11	38/37	148	578	333	788	25	301	829	8	
b12	126/127	113	831	707	1648	15	673	1786	6	
b13	63/63	52	237	172	381	12	153	401	4	
b14	277/299	1531	8236	2851	6947	124	2791	7749	18	
b17	1452/1512	4474	26303	15344	37726	104	14802	39178	28	
b18	3357/3343	20372	90869	43018	101870	137	40277	105328	51	
b20	522/512	3068	16614	6119	14497	128	6111	16545	21	
b21	522/512	3089	16938	6173	14724	121	6147	16631	21	
b22	767/757	4491	24671	9302	22107	124	9286	24908	21	

2017/9/29

Outline

Introduction

- Formalism
- Genetic Circuit Synthesis

Genetic Circuit Optimization

□ Summary and future work

Blocking Terminators in Cascaded Circuits

Optimization by Gate Merging

Merging condition

Gate Y starts with inversed promoter controlled by the output of gate X

Gate-Merging Friendly Library

□ Make DNA sequences start with inverted P

Gate	Function	DNA Sequence	Cost
CONST0	0	G	1
CONST1	1	PG	2
BUF(a)	a	dG	2
NOT(a)	$\neg a$	P_aG	2
AND2(a, b)	$a \cdot b$	$d_a T_b G$	3
OR2(a,b)	$a \lor b$	$d_a d_b G$	3
$\mathrm{NAND2}(a,b)$	$ eg a \lor eg b$	$P_a P_b G$	3
$\mathrm{NOR2}(a,b)$	$ eg a \cdot eg b$	$P_a L_b G$	3
$\mathrm{XOR2}(a,b)$	$ eg a \cdot b \lor a \cdot \neg b$	$d_{ab}G$	2
XNOR2(a, b)	$a \cdot b \lor \neg a \cdot \neg b$	$P_{ab}G$	2
$\mathrm{IMPLY}(a, b)$	$ eg a \lor b$	$d_b P_a G$	2
NOTIMPLY(a, b)	$a\cdot eg b$	$d_a L_b G$	2
$ANDk(v_1,\ldots,v_k)$	$v_1 \wedge \cdots \wedge v_k$	$\overline{d_{v_1}T_{v_2}}\dots T_{v_k}G$	k+1
$ORk(v_1,\ldots,v_k)$	$v_1 \lor \cdots \lor v_k$	$d_{v_1}d_{v_2}\dots d_{v_k}G$	k+1

Mergeability Graph

Gate	Function	DNA Sequence	Cost
CONST0	0	G	1
CONST1	1	PG	2
$\mathrm{BUF}(a)$	a	dG	2
NOT(a)	$\neg a$	P_aG	2
AND2(a, b)	$a \cdot b$	$d_a T_b G$	3
OR2(a,b)	$a \lor b$	$d_a d_b G$	3
NAND2(a, b)	$\neg a \lor \neg b$	$P_a P_b G$	3
NOR2(a, b)	$\neg a \cdot \neg b$	$P_a L_b G$	3
XOR2(a, b)	$ eg a \cdot b \lor a \cdot \neg b$	$d_{ab}G$	2
XNOR2(a, b)	$a \cdot b \lor \neg a \cdot \neg b$	$P_{ab}G$	2
IMPLY(a, b)	$\neg a \lor b$	$d_b P_a G$	2
NOTIMPLY(a, b)	$a \cdot \neg b$	$d_a L_b G$	2
$ANDk(v_1,\ldots,v_k)$	$v_1 \wedge \cdots \wedge v_k$	$\overline{d_{v_1}T_{v_2}}\dots T_{v_k}G$	k+1
$ORk(v_1,\ldots,v_k)$	$v_1 \lor \cdots \lor v_k$	$d_{v_1}d_{v_2}\ldots d_{v_k}G$	k+1

Path Covering on Mergeability Graph

Weighted-path covering problem

- Find a set of disjoint paths that covers all nodes
- Can be transformed to the minimum assignment problem and solved by the Hungarian algorithm in O(n³)

Path Covering by 0/1-ILP

20

minimize	$\sum C(g_i)$	minimize	$2x_{1,4} + x_{2,4} + 2x_{4,7} + 2x_{4,8} + $
	$g_i \in V$		$4x_1 + 4x_2 + 3x_3 + 4x_4 + $
subject to $x_i + \sum$	$x_{i,j} = 1$, for $i = 1, \dots, n$		$4x_5 + 4x_6 + 3x_7 + 4x_8$
$g_j \in FO(g_i$		subject to	$x_1 + x_{1,4} = 1$
\sum	$x_{i,j} \le 1$, for $j = 1,, n$		$x_2 + x_{2,4} = 1$
$g_i \in FI(g_j)$			$x_3 + x_{3,6} = 1$
			$x_4 + x_{4,7} + x_{4,8} = 1$
			$x_5 + x_{5,8} = 1$
$(2+ FI(g_i) ,$	$x_i = 1$		$x_6 = 1$
$C(g_i) = \left\{ FI(g_i) , \right.$	$x_i \neq 1 \land FO(g_i) \neq 1$		$x_7 = 1$
$(-1+ FI(g_i) ,$	$x_i \neq 1 \land FO(g_i) = 1$		$x_8 = 1$
			$x_{1,4} + x_{2,4} \le 1$
			$x_{4,8} + x_{5,8} \le 1.$

optimum solution $x_{2,4}, x_{4,7}, x_{5,8}, x_{3,6}, x_1, x_6, x_7, x_8 = 1$

$$\underbrace{\underbrace{d_{a}T_{b}G_{1}T}_{G_{1}}\underbrace{d_{c}d_{d}G_{2}T}_{G_{2}}\underbrace{P_{g_{1}}G_{3}T}_{G_{3}}\underbrace{d_{g_{1}}T_{g_{2}}G_{4}T}_{G_{4}}\underbrace{d_{e}G_{5}T}_{G_{5}}}_{\underbrace{d_{g_{3}}L_{g_{4}}G_{6}T}_{G_{6}}\underbrace{d_{g_{4}}G_{7}T}_{G_{7}}\underbrace{d_{g_{4}}T_{g_{5}}G_{8}T}_{G_{8}}} \xrightarrow{\underbrace{d_{a}T_{b}G_{1}T}_{G_{1}}\underbrace{P_{c}P_{d}T_{g_{1}}G_{4}G_{7}T}_{G_{2},G_{4},G_{7}}\underbrace{P_{g_{1}}L_{g_{4}}G_{6}T}_{G_{3},G_{6}}\underbrace{d_{e}T_{g_{4}}G_{8}T}_{G_{5},G_{8}}}_{iff for events for event$$

Optimization Flow

Optimization Results

			org. syr	org. synthesis merge aware synthesis						
Circuits	#Gate	#PI/#PO	Opt.	Opt.	Org.	Opt.	Opt.	CPU		
			Length	Level	Length	Length	Level	Time	#Var.	#Cst.
b03	111	34/34	399(1.00)	7(1.00)	480	359~(0.90)	6 (0.86)	0.00	403	222
b04	474	77/74	1598(1.00)	22(1.00)	1927	1313 (0.82)	20(0.91)	0.00	1527	948
b06	36	11/14	106(1.00)	6(1.00)	145	90~(0.85)	4 (0.67)	0.00	123	72
b07	324	50/57	1097 (1.00)	23(1.00)	1315	895 (0.82)	12(0.52)	0.00	1048	648
b08	132	30/25	404 (1.00)	12(1.00)	543	359~(0.89)	10(0.83)	0.00	436	264
b09	111	29/29	440 (1.00)	10(1.00)	471	$360 \ (0.82)$	6(0.60)	0.00	389	222
b10	151	28/23	460 (1.00)	11 (1.00)	624	410(0.89)	9(0.82)	0.00	496	302
b11	418	38/37	1454 (1.00)	25(1.00)	1746	1155 (0.79)	17(0.68)	0.00	1365	836
b12	881	126/125	3062(1.00)	15(1.00)	3646	$2598 \ (0.85)$	10(0.67)	0.00	2890	1762
b13	220	63/63	725(1.00)	12(1.00)	707	640 (0.88)	7(0.58)	0.00	735	440
b14	3982	277/299	12649(1.00)	124(1.00)	16426	$11067 \ (0.88)$	41 (0.33)	0.06	12743	7964
b17	18925	1452/1512	68414(1.00)	104(1.00)	79782	$58268\ (0.85)$	57 (0.55)	0.31	62369	37850
b18	52078	3357/3343	187906(1.00)	137(1.00)	216853	$151473 \ (0.81)$	94 (0.69)	0.90	168118	104156
b20	8045	522/512	26735(1.00)	128(1.00)	28767	$22379 \ (0.84)$	49 (0.38)	0.12	25688	16090
b21	8105	522/512	27070(1.00)	121(1.00)	28925	22558 (0.83)	43(0.36)	0.11	25875	16210
b22	12124	767/757	40711 (1.00)	124(1.00)	43480	$33652 \ (0.83)$	53(0.43)	0.17	38594	24248

.

16% length reduction; 36% level reduction

Outline

Introduction

Formalism

- Genetic Circuit Synthesis
- Genetic Circuit Optimization
- Summary and future work

Summary

Motivated bio-design automation

- Formalized the syntax and semantics of recombinase-based logic gates
- Used existing logic synthesis flow for genetic circuit synthesis
- Optimized genetic circuit by gate merging

Analog computationWet lab validation

References

- Tai-Yin Chu, J. Logic synthesis of recombinasebased genetic circuits. Scientific Reports (to appear).
- Chun-Ling Lai, J., Francois Fages. Recombinasebased genetic circuit optimization. BioCAS, 2017.

Acknowledgement

Collaborators

- Tai-Yin Chiu, NTU
- Chun-Ning Lai, NTU
- Francois Fages, INRIA
- Franck Molina, CNRS

Sponsor

Ministry of Science of Technology, Taiwan

Thanks for Your Attention!

Questions?